The aim of the course is to bring students to the fundamentals of energy economics, providing them the basic tools needed to understand the current energy problems and their interconnection with other fields.

Learning objectives of the subject

The aim of the course is to bring students to the fundamentals of energy economics, providing them the basic tools needed to understand the current energy problems and their interconnection with other fields.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 120h</th>
<th>Hours small group: 30h</th>
<th>25.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guided activities: 10h</td>
<td></td>
<td>8.33%</td>
</tr>
<tr>
<td>Self study: 80h</td>
<td></td>
<td>66.67%</td>
</tr>
</tbody>
</table>
1. INTRODUCTION.

Description:
1.1. Basic definitions: primary and secondary, renewable and non-renewable, commercial and non-commercial, conventional and non-conventional energy products.
1.2. Energy supply chain components.
1.3. Flow of energy products.

Learning time: 4h

Theory classes: 4h

2. ENERGY BALANCE.

Description:
2.1. Definition of energy balance, structure and typologies.
2.2. Analysis of the information of the energy balance. Energy supply mix, self-reliance in supply, share of renewable energies, efficiency of electricity generation, power generation mix, refining efficiency, overall energy transformation efficiency, per capita consumption of primary and final energy, energy intensity.

Learning time: 9h

Theory classes: 9h

3. ECONOMIC FOUNDATIONS OF ENERGY DEMAND.

Description:
3.1. Microeconomics basic concepts.
3.3. Cost minimization problem of the producer. Production function, isoquant curves, total cost of production, isocost lines, conditional factor demand functions, production expansion path.

Learning time: 56h

Theory classes: 56h

4. ALTERNATIVE APPROACHES TO ENERGY DEMAND ANALYSIS.

Description:
4.2. Index decomposition analysis. Analysis of change in total energy demand. Analysis of change in energy intensities.

Learning time: 81h

Theory classes: 81h
Qualification system

\[N = 0.4 \times N_1 + 0.3 \times N_2 + 0.3 \times N_3 \]

- \(N_1 \): Examen final
- \(N_2 \): Ejercicios entregados
- \(N_3 \): Trabajo final

Bibliography

Basic:
